
Looking Back on Three Years of Flash-based Malware

Christian Wressnegger and Konrad Rieck
Institute of System Security, TU Braunschweig

Abstract
Adobe Flash is about to be replaced by alternative technolo-
gies, yet Flash-based malware appears to be more common
then ever. In this paper we inspect the properties and tempo-
ral distribution of this class of malware over a period of three
consecutive years and 2.3 million unique Flash animations.
In particular, we focus on initially undetected malware and
thus look at a subset for which traditional methods have
failed to provide timely detection. We analyze the prevalence
of these samples and characterize their nature.

1. INTRODUCTION
For years dynamic and multimedia content was equatable

to the use of the Adobe Flash platform. This started to slowly
change with the upswing and advancement of JavaScript in
modern web browsers, and accelerates with the gradual imple-
mentation of the HTML 5 standard [10]. However, according
to Adobe the Flash Player is still used on a billion desktop
computers with different browsers and operating systems [2].
The prevalence of the platform is further emphasized by the
fact that in 2016 about every fourth webpage among the
Top 1000 was still using Adobe Flash for video streaming,
gaming, or advertisements [6].

This unprecedented pervasiveness has naturally attracted
adversaries that take advantage of security issues to attack
end-users. Unfortunately, the Adobe Flash platform has a
long-standing history of severe security vulnerabilities. In the
last two years, the Flash Player has been assigned 595 CVEs,
marking an all-time high and a tremendous increase when
compared to previous years [17]. Several of these vulnera-
bilities have been found to be used for targeted attacks [24]
and also exploit kits are known to use recently published vul-
nerabilities as well as zero-day exploits for specially tailored
Flash-based malware [3, 20].

Now that the end of an era presumably is within sight [1, 10]
we take a look back on the past years of the Adobe Flash
platform and, in particular, the malware which targets it. To
this end, we first study different attack vectors of Flash-based

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EuroSec’17, April 23 2017, Belgrade, Serbia
c© 2017 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4935-2/17/04. . . 5.00

DOI: http://dx.doi.org/10.1145/3065913.3065921

malware and highlight popular strategies to hide malicious
content, such as staged execution, source-code obfuscation,
and most prominently probing of the execution environment.

Building upon this knowledge we conduct an extensive
empirical study, where we consider a total of 2.3 million
unique Flash animations that have been collected over a
period of more than three consecutive years. For each of
these samples, we have acquired multiple scan results of 66
different virus scanners from the VirusTotal service, which
allows us to effectively track detections over time and thus
study malware samples that have initially been missed by the
AV industry. This is particularly interesting for a number
of reasons: First, to understand the nature and evolution
of malware and, second, to evaluate the performance of
detection methods in cases where traditional methods have
failed to trigger alarms.

For our analyses we define different subsets of our data that
reflect this issue with varying degree. In particular, these
subsets are defined using different thresholds for the minimal
number of detections at the first and last scan of a sample.
In our strictest setting, a sample must not be detected by
a single virus scanner at first, but later on by at least 10.
We then focus our evaluation on the malware samples in
these subsets and characterize them with respect to basic
properties, such as the use of environment fingerprinting,
the dependency on Flash versions, and whether the malware
uses dynamically loaded code or even relies on commercial
runtime packers.

In summary, we make the following contributions:

• Large-scale analysis. For our study we consider a
dataset of 2.3 million unique Flash animations compris-
ing benign and malicious samples from three years.

• Identification of initially undetected malware.
On the basis of multiple scans at varying points in time
we identify Flash-based malware that went unnoticed
when seen in the wild for the first time.

• Characterization. We examine the basic properties
and features of these at-the-time undetected malware
samples to better understand the nature of novel and
difficult to detect malware.

The rest of the paper is structured as follows: Section 2
provides an overview of Flash-based malware and its attack
vectors. The composition of the used dataset is described in
Section 3. Section 4 narrows the overall data down to novel
malware instances and characterizes these before Section 5
discusses related work. Section 6 concludes the paper.

http://dx.doi.org/10.1145/3065913.3065921


2. FLASH-BASED MALWARE
For 20 years now, the Adobe Flash platform has been used

to provide dynamic and multimedia content on webpages,
bringing forth a multitude of different releases. Unfortunately,
serious security flaws accompany this evolution, which have
steadily supported the proliferation of web-based malware. In
comparison to the 5-year average from 2010 to 2014 the num-
ber of vulnerabilities that have been assigned a CVE number
has more than quadrupled in both subsequent years 2015
and 2016 (Figure 1).

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

Year of occurrence

0

50

100

150

200

250

300

350

N
um

be
r o

f C
VE

s

Figure 1: Number of vulnerabilties discovered in the
Adobe Flash Player over the past 10 years.

In the following, we provide a brief overview of the ver-
sions and components of Flash that are relevant today, and
highlight different attack scenarios and common obfuscation
techniques employed by Flash-based malware.

2.1 Adobe Flash
Most Flash files contain ActionScript (AS) code to handle

user input or drive animations. Today, two versions of the
language are in frequent use, ActionScript 2 and 3, where the
latter is a complete redesign based on the ECMAScript stan-
dard (ECMA-262) to support object-oriented programming.
Along with the new language, ActionScript 3 also introduces
a new virtual machine known as AVM2, whereas Action-
Script version 1 and 2 are executed on the initial version of
the ActionScript VM (AVM1).

The SWF file format is common to all versions of Action-
Script, although it has been occasionally extended when new
features emerged. Internally, Flash animations are composed
of so-called tags, containers that are used to store Action-
Script code as well as data of various kinds, including audio,
video, image, and font data. Current versions of Flash sup-
port several dozen different types of tags, some of which occur
nested, offering a huge attack surface for memory corruption
exploits.

2.2 Attack Vectors and Scenarios
The complexity of the SWF file format, a powerful scripting

language and the fact that both have evolved over years make
Adobe Flash a perfect target for adversaries. We can roughly
differentiate between three general categories of attacks, that
may overlap in practice.

First, a piece of malware may be specially crafted to exploit
the Flash Player during normal processing of its input, which
does not necessarily involve the execution of ActionScript. An
early example for such a vulnerability is CVE-2007-0071, that
can be exploited to execute arbitrary code by leveraging an
integer overflow caused by a negative Scene Count value [17].
Second, by utilizing the rich capabilities of ActionScript, an

adversary can further advance the launching or preparation
of exploits against either the Flash Player or different parts
of the browser. CVE-2015-3113, for instance, allows to trigger
a bug in the Microsoft Internet Explorer using the external
interface of ActionScript 3. This can then be used to corrupt
the length of a Flash Vector object and write outside its
initially allocated memory [3, 17]. ActionScript can also be
used to perform heap spraying or to obfuscate the presence
of an attempt to launch an exploit (Section 2.3). Third,
malware may use ActionScript to fingerprint the execution
environment in a first stage of an attack and then redirect
the user to an instance of an exploit kit, serving the actual
malware. Adversaries have frequently used this scenario to
reach a vast number of victims by distributing malicious
advertisements over ad networks [see 4, 11].

2.3 Obfuscation
Malware authors employ different types of obfuscation

to hinder analysis by automated systems and human ex-
perts [e.g., 13]. For malware based on Adobe Flash, three
techniques are particularly prominent: First, so-called staged
execution can be performed. At the first stage the malware
only contains functionality to load further code, which in
the second stage triggers the payload—a procedure that may
be stretched over multiple rounds, potentially using encryp-
tion. Second, source-code obfuscation by inserting junk code,
redirecting the control flow, or the use of rare or invalid in-
structions is frequently used in practice. Third, malware may
fingerprint the environment to select a particular exploit for
the current version of the platform or withhold its malicious
intend if under analysis. In the following, we describe each
of these techniques in more detail and provide examples of
malware that employs them.

Staged execution. Both, ActionScript version 2 and 3 allow to
dynamically load code in the form of Flash animations using
the loadMovie function and the Loader class, respectively.
This opens the door for encrypted payloads, polymorphism
and runtime-packers such as secureSWF [9], SWFLock [19],
or DoSWF [23]. The latter for instance is used by a sample1

extracted from the Fiesta exploit kit, but also custom tailored
solutions are equally widespread2. Due to the fact that
recent versions of the Adobe Flash Player maintain backwards
compatibility to the AVM1, for a long time it had been
popular to load exploits for that particular platform, such as
CVE-2007-0071, from within the AVM2. In light of the vast
amount of newly discovered exploits for recent versions of
the Adobe Flash Player this attack vector has become less
important recently.

Source-code obfuscation. This obfuscation technique is geared
towards thwarting systems trying to decompile the AVM
bytecode, which can be used for the analysis by human
experts and detectors based on static analysis. The landscape
of Flash-based malware features numerous variants of this
technique, that are also known from other platforms, such as
variable substitution, string assembly, dead code insertion or
changing the control flow. One example of such techniques
is a malware exploiting CVE-2015-5122 that has been found
in the popular Angler exploit kit3.

1md5: 5bf447627975b9ac6d0c68aa7f0b7d9a
2md5: 7a322e01234ae1261428efe384956a26
3md5: 7a322e01234ae1261428efe384956a26



0 10 20 30 40
Number of virus scanners detecting a sample

100

101

102

103

104

105

106

107
N

um
be

r o
f s

ca
ns

Figure 2: The number of scans in our dataset that contain detections from a certain number of virus scanners.

Probing the environment. As with other types of web-based
malware, environment checks are heavily used in Flash-based
attacks to (a) check for analysis environments and (b) fit the
attack strategy to the version of the Flash platform and the
browser [e.g., 4, 21]. With the System.capabilities (AS-2)
and flash.system.Capabilities (AS-3) structures Flash pro-
vides various information on the execution environment.

As an example of such probing, a recent malware sample4

exploiting the vulnerability CVE-2015-5119 uses the variable
flash.system.Capabilities.isDebugger for detecting poten-
tial debugging of its code. Similarly, other samples5 make
use of sanity checks (version == 0) or range-based version
checks (version >= 150000189 && version <= 150000239) for
exploring the environment.

Information about the environment may also be forwarded
to the Flash animation using FlashVars—key/value pairs
encoded in the object or embed HTML tags, or passed over as
part of the URL. These variables can than be accessed using
the flash.display.LoaderInfo object and might be used to
trigger suitable exploits as frequently seen in exploit kits6.

3. DATA COMPOSITION
The dataset for our analysis has been collected from De-

cember 2013 to January 2017 with the aid of the VirusTotal
service and contains 2.3 million unique Flash animations in
total. We have hence obtained malicious as well a benign
samples for 38 months or roughly three years.

For each malware sample, we have additionally received
the scan reports of all virus scanners run by the service using
their—at the time—most recent signature databases. As a
consequence, we have gathered an extensive portrayal of the
detection performance of individual scanners for Flash-based
malware over several years. As we have observed the data
stream completely passively, that is, we have received the
malware samples as they were submitted to VirusTotal, the
number of reports per sample and their intervals vary con-
siderably. Figure 3 shows the number of scans per sample in
bins of 10. Note the logarithmic scale on the y-axis.

In the scope of this work we are primarily interested in
inspecting how well Flash-based malware has been detected
over the years and whether Flash-based malware still is an
issue nowadays. As Adobe Flash has been declared dead for
years now one might expect that also the number of malware
samples has decreased with the downturn in usage numbers.

4md5: 708e22f5a806804293d3c2b90e7d62ba
5md5: eeb243bb918464dedc29a6a36a25a638
6md5: 439fea2f3f9b7ef0a0fdc01fb97b99a9

The fact that the number of discovered vulnerabilities has
reached an all-time high in the past two years (cf. Figure 1)
proofs a certain interest in the Adobe Flash platform with
respect to security. This, however, does not necessarily tell
anything about the propagation of malware or whether this
existing problem has been successfully contained. To shed
light on the latter, we first have a look at the results of the
virus scanners for each detection report we have collected.
Figure 2 visualizes the results. We observe that the vast
amount of scans find completely benign files without a single
detection of any virus scanner hosted at VirusTotal. We
credit this to the natural imbalance of benign to malicious
samples submitted to such services.

0 100 200 300 400 500
Number of scans

10-1

100

101

102

103

104

105

106

N
um

be
r o

f s
am

pl
es

Figure 3: The number of malware samples associ-
ated with a certain amount of scans in bins of 10.

Second, we further look into the detections per sample
and investigate how confident the collective decision towards
a classification is in terms of the number of virus scanners
agreeing on a sample being malware. Figure 4 shows the
distribution of the temporal change of a sample’s detection
rate for the respective number of virus scanners detecting a
sample as malicious (whiskers are limited to 1.5×IQR). The
temporal change is measured as the difference between the
current and very last scan we have observe in our dataset.
For example, a sample detected by 4 and later 41 scanners is
visible at the very top of the distribution on index 4 of the
x-axis.

Similarly to Figure 2, the scans producing no detections
are dominated by truly benign samples that are classified
as such. The same holds true for scans where only one or
two virus scanners raise an alarm. However, starting with 3
detections the variability and distance to the final number of
detections increases drastically and only starts to flatten out
towards higher values, meaning that the overall detection



0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
Number of virus scanners detecting a sample

20

10

0

10

20

30

40

50
D

is
ta

nc
e 

to
 fi

na
l d

et
ec

tio
n 

ra
te

Figure 4: The detection rate’s temporal change for different numbers of virus scanners detecting a sample.

rate becomes more stable with larger agreement. This bluntly
reveals the reactive nature of current security solutions that
allow to detect known malware but do not extrapolate very
well to new and previously unknown instances.

From a malware detection point of view, the most interest-
ing samples are those that heavily change in the number of
detections, as these indicate cases where the virus scanners
at first lack sufficient detection patterns but have adjusted
over time. In the most extreme case, we are dealing with
samples that have initially not been detected by any scanner
but later on by a significantly large fraction. In Figure 4
these outliers are indicated as red dots.

4. SLIPPED THROUGH THE NET
For a more detailed analysis of Flash-based malware, we

inspect those samples that drastically change in the number
of detections over time. In particular, we consider three
different subsets of varying difficulty for being detected which
we refer to as Zarkov sets. The subsets are constructed
using two thresholds T = (t1, t2) such that the number of
detections for a sample has to first be lower or equal to t1
and subsequently greater or equal to t2:

Z-1 . For this subset we draw a sharp line at five detections.
A sample is included whenever it receives five or more
detections but did not in a previous scan: T = (4, 5).

Z-2 . Here we ignore scans with 5–9 detections and only
consider samples that change from less than five to ten
or more detections: T = (4, 10).

Z-3 . Finally, we make use of a rather strict specification
that merely includes samples that start off with no
detection at all and eventually are detected by ten or
more virus scanners: T = (0, 10).

Applying these thresholds leads to a total number of 3,321
unique Flash-based malware samples in Z-1 , 2,904 in Z-2 ,
and 814 instances in Z-3 . Note that by construction, each
of these sets is a strict subset of the former.

To convey a better feeling for how frequent these initially
undetected instances occur, we inspect the points in time
when we have first received them. Figure 5 breaks down
the first occurrences of samples in Z-1 by month revealing
sporadic highs through out the years. In June/July 2014,
for instance, CVE-2014-0515 has been heavily used in various
malware samples—a vulnerability that was found in the wild
in mid-April 2014 in the context of a number of targeted
attacks [24].

2014 2015 2016 2017
12 01 02 03 04 05 06 07 08 09 10 11 12 01 02 03 04 05 06 07 08 09 10 12 01 02 03 04 05 06 07 08 09 10 11 12 01

Months

0

50

100

150

200

250

300

350

N
um

be
r o

f s
am

pl
es

Z-1

Figure 5: Initially undetected samples per month.

Subsequently we further inspect these sets with respect
to basic properties and features to better understand the
nature of at the time undetected Flash-based malware.

Adobe Flash version numbers. First, we look at the version
of the Adobe Flash Player that is targeted by the malware.
Figure 6 shows the relative frequency of the used versions
for the samples in datasets Z-1 to Z-3 . Almost all platforms
that have been released in the last 20 years are targeted by
the samples we have identified. This is particular noteworthy
as we are dealing with Flash-based malware that (a) has
been collected in the last three years and (b) has initially
not been detected by a single virus scanner: Z-3 .

The heavy use of the exploit CVE-2014-0515 can be linked
to this figure as well. While in principle versions up to 13 are
affected, this only applies to Windows and Mac OS releases.
For Linux versions of the Flash Player, for which the devel-
opment of the platform stagnates, the exploit is limited to
versions up to 11.2. The same holds true for CVE-2015-0311

which likewise concerns the Adobe Flash Player up to ver-
sion 11.2 across all major platforms, explaining the burst
for adjoining versions. For version 17 CVE-2015-0359 and
CVE-2015-5119, for instance, are very common.

Included ActionScript. Next, we evaluate whether the sam-
ples from the sets Z-1 to Z-3 contain ActionScript code and
if so, which version it is of and which version of the Ac-
tionScript VM is targeted. Table 1 lists the exact numbers.

Dataset AS-1 AS-2 AS-3 Total

Z-1 0.8% 1.4% 97.3% 99.5%
Z-2 0.4% 0.4% 99.0% 99.8%
Z-3 0.0% 0.4% 99.4% 99.8%

Table 1: Malware samples by the used ActionScript
dialect for different Zarkov sets Z-1 to Z-3 .



3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.1 10.2 10.3 11.0 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0
Adobe Flash version number

0.1%

1%

10%

100%

R
el

at
iv

e 
fre

qu
en

cy
1996 - 2005

(AVM1)
2011 2012 2013 2014 2015 2016

Z-1
Z-2
Z-3

Figure 6: Flash version numbers in our datasets and the years the corresponding platform has been released.

The great majority of the Flash-based malware we consider
makes use of ActionScript 3 to fingerprint the environment,
obfuscate the actual payload, or facilitate the actual exploit.
Only 0.2–0.5% of the samples do not contain any Action-
Script code, which suggests that these few instances solely
make use of structural exploits to implement the attack.

A few Flash-based malware samples even use Action-
Script 1 or 2 for their attacks and consequently rely on the
AVM-1 which is deprecated for more than 10 years and kept
in recent versions of the Flash Player to provide backwards
compatibility.

Runtime packers. ActionScript code is often used to obfus-
cate the malicious intention of the malware, as for instance,
via generic runtime packers. The functionality of these is
similar to their counterparts on other platforms: A minimal
unpacking routine extracts the packed and/or encrypted pro-
gram code that subsequently gets executed. Additionally,
function and variable names often are aggressively mangled,
or dead code is inserted to further complicate analysis.

For this experiment we have looked for indicators of three
popular runtime packers: DoSWF [23], secureSWF [9], and
SWFLock [19]. Table 2 summarizes the results and shows
that by merely looking for these few commercial products we
can already identify 12% of the Flash-based malware as being
packed/protected. The importance of such runtime packers
for day-to-day analysis of Flash-based malware is further
emphasized by the fact that tools from the AV industry
incorporate functionality to specially handle such packers [5].

Dataset DoSWF secureSWF SWFLock Total

Z-1 8.40% 2.62% 1.23% 12.26%
Z-2 7.64% 2.24% 1.24% 11.12%
Z-3 4.42% 0.49% 0.12% 5.04%

Table 2: Number of Flash-based malware protected
with one of three popular commercial packers.

Malware characteristics. Finally, we derive more specific char-
acteristics of Flash-based malware with the aid of VirusTotal
and visualize these for the Z-1 dataset in Figure 7. For in-
stance, roughly 40% of the samples make use of dynamically
loaded code. While the previous section already provides
evidence for the importance of obfuscation for this kind of
malware, the difference in the use of dynamic code and iden-
tified packers suggests that significantly more instances use
similar products or custom solutions. This however must not
be confused with the compression natively used by the SWF
format which is the case for 92% of the samples. Further-

more, about 20% of the samples use the capabilities struct
to perform environment fingerprinting. For 60% we are able
to detect specific exploits, 10% use the external interface
to communicate with the webpage the sample is embedded
in, 5% contain very long ASCII hex-strings, and very few
samples even contain raw executable files.

Dyn
am

ic 
co

de

Env
. fi

ng
erp

rin
tin

g

Exte
rna

l in
ter

fac
e

Lo
ng

 he
x-s

trin
gs

Con
tai

ns
 ex

ec
uta

ble

Exp
loi

t d
ete

cte
d

Pac
ke

r d
ete

cte
d

Is 
co

mpre
ss

ed
0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
iv

e 
fre

qu
en

cy

Figure 7: Security relevant properties of initially un-
detected Flash-based malware samples in Z-1 .

5. RELATED WORK
Our analysis touches two disjunct fields of security research:

(a) The detection performance of virus scanners and (b) the
analysis of Flash-based malware. Subsequently, we briefly
discuss recent work of both in relation to our study.

Evaluating virus scanners. The research community has
repeatedly looked at the detection performance of virus scan-
ners [e.g., 16], the quality of their textual labels [e.g., 14, 18],
and how these can be used to build better ground-truth
for evaluation [e.g., 7, 8]. The latter approaches share
similarities with our work as they likewise analyze detec-
tions of virus scanners and go even further in that regard.
Kantchelian et al. [8] also discuss the evolution of detections
and observe that labels stabilize over time. Hurier et al. [7]
briefly note that it is not sufficient to merely use thresholds
on individual scans to build ground-truth, as detection re-
sults may change over time. Miller et al. [15], on the other
hand, point out the importance of strict temporal separation
of labels for training and testing malware detectors.

However, none of this work filters and processes malware
based on the temporal evolution of detections as used for the
composition of the Zarkov sets and our subsequent analysis.
While our approach is not intended for deriving ground-truth
for a complete dataset, it enables us to determine initially
missed malware instances, which are crucial test cases for
the evaluation of detection approaches in general.



Flash-based malware. Surprisingly, the analysis of malware
targeting the Adobe Flash platform has received relatively
little attention over the years. Ford et al. [4] presents
OdoSwiff a system designed to detect malicious adver-
tisements based on static and dynamic analysis, whereby
the latter lays special focus on ActionScript 2. Its successor
FlashDetect [21] by contrast acts as a general purpose
detector for Flash-based malware using ActionScript 3, and
thus, fills a gap OdoSwiff left behind. Gordon [22] im-
proves the detection performance for Flash-based malware
over FlashDetect by employing a pragmatic approach to
multi-path exploration for ActionScript 2 and 3 code in
combination with structural features of the file format. Lind-
ner [12] proposes an alternative to the mere analysis and
detection: Blitzableiter prevents malicious Flash files from
executing as is and normalizes the file instead, thereby elim-
inating potentially malicious parts. Each of these systems
would greatly benefit from demonstrating their effectivity on
the three Zarkov datasets.

6. CONCLUSIONS
Adobe Flash repeatedly suffers from vulnerabilities and

malware targeting the platform. In this paper, we look
at Flash-based malware from three consecutive years. By
exploiting the temporal change of detection rates we are able
to specially focus our study on malware that has initially
been missed by traditional methods due to their reactive
nature. We show that such instances are constantly observed
throughout the years with peaks that relate to popular attack
campaigns. Our analysis enables carving out interesting test
cases from large malware collections and thus is a perfect
tool for evaluating detection methods in non-ideal scenarios.

Acknowledgments
The authors gratefully acknowledge funding from the German
Federal Ministry of Education and Research (BMBF) under
the projects APT-Sweeper (FKZ 16KIS0307) and VAMOS
(FKZ 16KIS0534).

References
[1] Adobe Systems. Flash, HTML5 and open web stan-

dards. https://blogs.adobe.com/conversations/2015/
11/flash-html5-and-open-web-standards.html, visited
March 2017.

[2] Adobe Systems. Adobe Flash runtimes: Statis-
tics. http://www.adobe.com/products/flashruntimes/
statistics.html, visited March 2017.

[3] D. Caselden, C. Souffrant, and G. Jiang. Flash in
2015. https://www.fireeye.com/blog/threat-research/
2015/03/flash in 2015.html, visited March 2017.

[4] S. Ford, M. Cova, C. Kruegel, and G. Vigna. Analyzing
and detecting malicious flash advertisements. In Proc.
of Annual Computer Security Applications Conference
(ACSAC), 2009.

[5] T. Hirvonen. Dynamic instrumentation tool for adobe
flash player built on intel pin. https://github.com/F-
Secure/Sulo, visited March 2017.

[6] HTTP Archive. http://www.httparchive.org.

[7] M. Hurier, K. Allix, T. F. Bissyandé, J. Klein, and Y. L.
Traon. On the lack of consensus in anti-virus decisions:
Metrics and insights on building ground truths of an-
droid malware. In Proc. of Detection of Intrusions and
Malware & Vulnerability Assessment (DIMVA), 2016.

[8] A. Kantchelian, M. C. Tschantz, S. Afroz, B. Miller,
V. Shankar, R. Bachwani, A. D. Joseph, and J. D. Tygar.
Better malware ground truth: Techniques for weighting
anti-virus vendor labels. In Proc. of ACM Workshop on
Artificial Intelligence and Security (AISEC), 2015.

[9] KINDI Software. secureSWF: Protect, encrypt, and
optimize swf flash. http://www.kindi.com, visited
March 2017.

[10] A. LaForge. Flash and chrome. https://blog.google/
products/chrome/flash-and-chrome, visited March 2017.

[11] Z. Li, K. Zhang, Y. Xie, F. You, and X. Wang. Knowing
your enemy: Understanding and detecting malicious web
advertising. In Proc. of ACM Conference on Computer
and Communications Security (CCS), 2012.

[12] F. Lindner. Preventing Adobe Flash exploitation - Blitz-
ableiter - a signature-less protection tool. In Proc. of
Black Hat USA, 2010.

[13] C. Linn and S. Debray. Obfuscation of executable code
to improve resistance to static disassembly. In Proc. of
ACM Conference on Computer and Communications
Security (CCS), 2003.

[14] F. Maggi, A. Bellini, G. Salvaneschi, and S. Zanero.
Finding non-trivial malware naming inconsistencies. In
Proc. of International Conference on Information Sys-
tems Security (ICISS), 2011.

[15] B. Miller, A. Kantchelian, M. C. Tschantz, S. Afroz,
R. Bachwani, R. Faizullabhoy, L. Huang, V. Shankar,
T. Wu, G. Yiu, A. D. Joseph, and J. D. Tygar. Reviewer
integration and performance measurement for malware
detection. In Proc. of Detection of Intrusions and Mal-
ware & Vulnerability Assessment (DIMVA), 2016.

[16] A. Mohaisen and O. Alrawi. AV-Meter: an evaluation
of antivirus scans and labels. In Proc. of Detection
of Intrusions and Malware & Vulnerability Assessment
(DIMVA), 2014.

[17] S. Özkan. CVE Details. http://www.cvedetails.com,
visited March 2017.

[18] M. Sebastián, R. Rivera, P. Kotzias, and J. Caballero.
AVclass: A tool for massive malware labeling. In Proc.
of International Symposium on Research in Attacks,
Intrusions and Defenses (RAID), 2016.

[19] SWFLock.com. SWFLock: Online encryption software
for flash. http://www.swflock.com, visited March 2017.

[20] Trustwave Holdings, Inc. Trustwave global security
report. Technical report, Trustwave Holdings, Inc., 2016.

[21] T. van Overveldt, C. Kruegel, and G. Vigna. FlashDe-
tect: ActionScript 3 malware detection. In Proc. of
International Symposium on Research in Attacks, Intru-
sions and Defenses (RAID), 2012.

[22] C. Wressnegger, F. Yamaguchi, D. Arp, and K. Rieck.
Comprehensive analysis and detection of flash-based mal-
ware. In Proc. of Conference on Detection of Intrusions
and Malware & Vulnerability Assessment (DIMVA),
2016.

[23] Yushi High Technology Ltd. DoSWF – professional flash
swf encryptor. http://doswf.org, visited March 2017.

[24] V. Zakorzhevsky. New Flash Player 0-day (CVE-2014-
0515) Used in Watering-hole Attacks. https://securelist.
com/blog/incidents/59399/new-flash-player-0-day-
cve-2014-0515-used-in-watering-hole-attacks/, visited
March 2017.

https://blogs.adobe.com/conversations/2015/11/flash-html5-and-open-web-standards.html
https://blogs.adobe.com/conversations/2015/11/flash-html5-and-open-web-standards.html
http://www.adobe.com/products/flashruntimes/statistics.html
http://www.adobe.com/products/flashruntimes/statistics.html
https://www.fireeye.com/blog/threat-research/2015/03/flash_in_2015.html
https://www.fireeye.com/blog/threat-research/2015/03/flash_in_2015.html
https://github.com/F-Secure/Sulo
https://github.com/F-Secure/Sulo
http://www.httparchive.org
http://www.kindi.com
https://blog.google/products/chrome/flash-and-chrome
https://blog.google/products/chrome/flash-and-chrome
http://www.cvedetails.com
http://www.swflock.com
http://doswf.org
https://securelist.com/blog/incidents/59399/new-flash-player-0-day-cve-2014-0515-used-in-watering-hole-attacks/
https://securelist.com/blog/incidents/59399/new-flash-player-0-day-cve-2014-0515-used-in-watering-hole-attacks/
https://securelist.com/blog/incidents/59399/new-flash-player-0-day-cve-2014-0515-used-in-watering-hole-attacks/

	Introduction
	Flash-based Malware
	Adobe Flash
	Attack Vectors and Scenarios
	Obfuscation

	Data Composition
	Slipped through the Net
	Related Work
	Conclusions

